CONNECTED AND TOTAL EDGE DOMINATION IN BOOLEAN FUNCTION GRAPH B (G, L(G), NINC) OF A GRAPH

S. Muthammai¹ and S. Dhanalakshmi²

AlagappaGovernment Arts College, Karaikudi¹. Government Arts College for Women(Autonomous), Pudukkottai.²

Abstract

For any graph G, let V(G) and E(G) denote the vertex set and edge set of G respectively. The Boolean function graph B(G, L(G), NINC) of G is a graph with vertex set V(G) \cup E(G) and two vertices in B(G, L(G), NINC) are adjacent if and only if they correspond to two adjacent vertices of G, two adjacent edges of G or to a vertex and an edge not incident to it in G. For brevity, this graph is denoted by B₁(G). In this paper, Connected edge domination and total edge domination numbers of Boolean Function Graph B(G, L(G), NINC) of some standard graphs are obtained.

Keywords: Boolean Function graph, Edge Domination Number

1. INTRODUCTION

Graphs discussed in this paper are undirected and simple graphs. For a graph G, let V(G) and E(G) denote its vertex set and edge set respectively. A subset D of V is called a dominating set of G, if every vertex not in D is adjacent to some vertex in D. The domination number γ (G) of G is the minimum cardinality taken over all dominating sets of G. An edge e of a graph is said to be incident with the vertex v if v is an end vertex of e. In this case, it can also be said that v is incident with e.

A subset $F \subseteq E$ is called an edge dominating set of G, if every edge not in F is adjacent to some edge in F. The edge domination number $\gamma'(G)$ of G is the minimum cardinality taken over all edge dominating sets of G. An edge dominating set X of G is called a total edge dominating of G if the induced subgraph $\langle X \rangle$ has no isolated edges.

The total edge domination number $\gamma_t'(G)$ of G is the minimum cardinality taken over all of total edge dominating sets of G. An edge dominating set X of is called a connected edge dominating sets of G, if the induced subgraph $\langle X \rangle$ is connected. The connected edge domination number $\gamma_c'(G)$ of G is the minimum cardinality taken over all connected edge dominating sets of G. The concept of edge domination was introduced by Mitchell and Hedetniemi [6]. Arumugam and Velammal [1] have discussed edge domination number and edge domatic number. Vaidya and Pandit [7] determined edge domination number of middle graphs, total graphs and shadow graphs of P_n and C_n. For graph theoretic notations and terminology, Harary [2] is followed.

For a real x, $\lfloor x \rfloor$ denotes the greatest integer less than or equal to x. **Theorem 1.1.** [6] For any (p, q) graph G, $\gamma' \leq \lfloor p/2 \rfloor$

Therorem 1.2. [3] G and L(G) are induced subgraphs of B₁(G)

Theorem 1.3.[3] Number of vertices in B₁(G) is p+q and if d_i = deg_G(v_i), v_i \in V(G), then the number of edges is B₁(G) is q(p-2)+ $\frac{1}{2}\sum_{1 \le i \le p} d_i^2$.

Theorem 1.4.[3] The degree of a vertex of G in $B_1(G)$ is q and the degree of a vertex e' of L(G) in $B_1(G)$ is $deg_{L(G)}(e') + p - 2$. Also if $d^*(e')$ is the degree of a vertex e' of L(G) in $B_1(G)$, then $0 \le d^*(e') \le p+q-3$. The lower bound is attained, if $G \cong K_2$ and the upper bound is attained, if $G \cong K_{1,n}$ for $n \ge 2$.

Theorem 1.5. [3] $B_1(G)$ is disconnected if and only if G is one of the following graphs: nK_1 , K_2 , $2K_2$ and $K_2 \cup nK_1$, for $n \ge 1$.

In this paper, connected edge domination numbers of Boolean Function Graph B(G, L(G), NINC) of some standard graphs are obtained.

2. Connected edge domination in B(G, L(G), NINC) of a Graph

In the following connected edge domination number of $B_1(P_n)$, $B_1(C_n)$, $B_1(K_n)$, $B_1(K_{1,n})B_1(W_n)$ are found. **Theorem 2.1.** For the Path P_non vertices ($n \ge 4$), γ_c' ($B_1(P_n)$) = 2n-3

Proof: Let v_1 , v_2 ,..., v_n and e_{12} , e_{23} , ..., $e_{n-1,n}$ be the vertices and edges of P_n respectively. Then v_1 , v_2 , ..., v_n , e_{12} , e_{23} , ..., e_{n-1} , $n \in V((B_1(Pn))$ where $e_{i,i+1} = (v_i, v_{i+1})$, $i = 1, 2, ..., n - 1.B_1(Pn)$ has 2n-1 vertices and $n^2 - n-1$ edges.

Let $F_m = \{(v_{i,v_{jk}}) / 1 \le i \le n, j \equiv (i+m) \pmod{(n-1)}, k \equiv i+(m+1)\pmod{(n-1)}\}$ and $F = (\bigcup_{m=1}^{n-2} Fm) \cup \{(v_{1, e_{n-1}}), (v_{n, e_{n-2, n-1}})\}$. Then $E(B_1(P_n)) = E(P_n) \cup E(P_{n-1}) \cup F$. If $D' = \{\bigcup_{i=1}^{n-2} (v_{i,e_{i+1,i+2}}), (e_{i,i+1,e_{i+1,i+2}})\} \cup \{(v_{n-1, e_{12}})\}$, then $D' \subseteq E(B_1(P_n))$. D' dominates edges of P_n, P_{n-1} and F. D' is an edge dominating set of $B_1(Pn)$. Also, $D' \ge P_{n-1}^+$. Therefore, D' is a connected edge dominating set of $B_1(Pn)$ and hence $\gamma_{c'} (B_1(P_n)) \le |D'| = 2(n-2) + 1 = 2n-3$. Let D" be a minimum edge dominating set of $B_1(Pn)$ and hence

 $|D'| \ge n-2+n-1 = 2n-3$. Therefore, $\gamma_c'(B_1(P_n)) = 2n-3$.

Remark:2.1 γ_{c}' (B₁(P₃)) = 3

Theorem:2.2. For the Cycle C_n on n vertices $(n \ge 5)$ vertices, $\gamma_c'(B_1(C_n)) = 2n-3$. **Proof:** Let $v_1, v_2, ..., v_n$ be the vertices and $e_{12}, e_{23}, ..., e_{n-1}, .., e_{n1}$ are the edges of $B_1(C_n)$ where $e_{i, i+1} = (v_i, v_{i+1})$, i = 1, 2, ..., n - 1, $e_{n1} = (v_n, v_1)$. $B_1(C_n)$ has 2n vertices and n^2 edges. Let $F_m = \{(v_i, e_{jk}) / 1 \le i \le n, j \equiv (i+m) \pmod{n}, k \equiv (i+(m+1)) \pmod{n}, e_{01} = e_{n1}\}$ and $F = \bigcup_{m=1}^{n-2} Fm$ $B_1(C_n) = E(2C_n) \cup F$. $|E(B_1(C_n))| = 2n + n(n-2) = n^2$. Let $D' = \bigcup_{i=1}^{n-2} \{(v_i, e_{i+1,i+2}), (e_{i,i+1}, e_{i+1,i+2})\} \cup \{(v_{n-1}, e_{12})\}$. Then D' is a edge dominating set of $B_1(C_n)$.

 $\gamma_{c}'(B_{1}(C_{n})) \leq |D'| = 2 (n-2) + 1 = 2n - 3$. Let D" be a minimum connected edge dominating set of $B_{1}(C_{n})$. D" contains at least (n-1) edges of F and (n-2) edges of $L(C_{n})$. $|D''| \geq 2n-3$. Therefore, $\gamma_{c}'(B_{1}(C_{n})) = 2n-3$.

Remark: 2.2

(i) $\gamma_c' (B_1(C_3)) = 5$ (ii) $\gamma_c' (B_1(C_4)) = 6$

Theorem:2.3. For the complete graph K_n on n (n \geq 5) vertices, $\gamma_c'(B_1(K_n)) = (n+3) (n-2)/2$.

Proof:Let $v_1, v_2, ..., v_n$ be the vertices of K_n and $E(K_n) = \{e_{ij} = (v_i, v_j)/1 \le i \le n, 1 \le j \le n, i \ne j\}$ $B_1(K_n)$ has n(n+1)/2 vertices. $E(B_1(K_n)|=|E(K_n)|+|E(L(K_n)|+n(n-1)(n-2)/2 = n(n-1)(2n-3)/2$. Let $F_1 = \bigcup_{j=3}^n \{(v_1 e_{2j}), F_2 = \bigcup_{j=4}^n \{(v_2, e_{3j})\}, F_3 = \bigcup_{j=5}^n \{(v_3, e_{4j})\}$ $F_{n-3} = \bigcup_{j=n-3}^n \{(v_{n-3}, e_{n-2,j})\}, F_{n-2} = \bigcup_{j=2, j \ne n-2}^n \{(v_{n-2}, e_{1j})\}, F_{n-1} = \bigcup_{j=1}^{n-1} \{(v_i, v_{i+1})\}$ and let $F = \bigcup_{i=1}^{n-1} F_i$. Then $F \subseteq E(B_1(K_n))$. F is a dominating set of $B_1(K_n)$. Let P_n be the path induced by the vertices $v_1, v_{2, ...,} v_n \cdot < F > is$ a graph obtained by attaching n-2, n-3, n-4, ..., 2 and n-2 pendant edges at $v_1, v_{2, ...,} v_{n-3}, v_{n-2}$ of P_n respectively. Therefore, F is a connected edge dominating set of $B_1(K_n)$ and hence, $\gamma_c'(B_1(K_n)) \le |F| = |\bigcup_{i=1}^{n-1} F_i| = (n-2) + (n-3) + ... + 2 + n-2 + n-1 = (n-1)n/2 - 1 + n-2 = (n^2 - n - 2 + 2n - 4)/2 = (n^2 + n - 6)/2 = (n+3)(n-2)/2$.

Remark: 2.3

(i) γ_{c}' (B₁(K₃)) = 5

(ii) $\gamma_{c}' (B_1(K_4)) = 6$

Theorem:2.4. For the star $K_{1,n}$ on (n+1) vertices $(n \ge 4)$, $\gamma_{c}' (B_{1}(K_{1,n})) = n+1$.

Proof: Letv, v_1 , v_2 ,..., v_n be the vertices of $K_{1,n}$ with v as the central vertex. Let e_i = (v, v_i), i = 1, 2, 3, ..., n be the edges of $K_{1,n}$. Then v_1 , v_2 ,..., v_n , e_1 , e_2 ,..., $e_n \in V((B_1(K_{1,n})).B(K_1,n)$ has 2n+1 vertices and n(3n-1)/2 edges.

Let D'= { $\bigcup_{i=1}^{n-1} (e_i, e_{i+1})$ } \cup {(v, v_1), (v_1, e_n) }. Then |D'| = n+1. The edge (v, v_1) in D' dominates all the edges of G and the edges $\bigcup_{i=1}^{n-1} (e_i, e_{i+1})$, (v_1 , e_n) dominate remaining edges of $K_{1,n}$ and $D' \ge P_{n+2}$. Therefore, D' is a connected edge dominating set of $B_1(K_1, n)$ and hence

 γ' (B₁(K_{1,n}) $\leq |D'| = n+1$. Let D" be a connected edge dominating set of k_{1,n}. To dominate edges of k_{1,n}, D" contains one edge of k_{1,n}, and to dominate n(n-1) edges of the form (v_i,e_j) (e_j is not incident with v_i). D" contains atleast (n-1) edges. Since $\langle D'' \rangle$ is connected, D" contains one more edge and hence $|D'| \geq n+1$. Therefore, γ_c' (B₁(K_{1,n})) = n+1.

Therorem 2.5: For the Wheel W_n on n vertices $(n \ge 5), \gamma_c' (B_1 (W_n)) = 3n-5$.

Proof: Let $v_1, v_2, ..., v_n$ be the vertices of W_n with v_1 as the central vertex and $e_{12}, e_{13}, ..., e_{1n}$, be the edges of $B_1(C_n)$ where $e_{1, i+1} = (v_i, v_{i+1})$, i = 2, 3, ..., n. Then $v_1, v_2, ..., v_n, e_{12}, e_{13}, ..., e_{1n}, e_{23}, ..., e_{n2} \in V((B_1(W_n)).B_1(W_n)$ has 2n-1 vertices and (n-1) (3n-4) / 2 edges. Let $F_1 = \bigcup_{i=1}^{n-1} \{ (v_i, v_{i+1}) \}$, $F_2 = \bigcup_{i=2}^{n-2} \{ (v_i, e_{i+1, i+2}) \}$

> International Journal of Engineering, Science and Mathematics http://www.ijesm.co.in, Email: ijesmj@gmail.com

 $F_{3} = \bigcup_{i=2}^{n-2} \{ (e_{i,i+1}, e_{1,i}) \} \cup (e_{n-1, n}, e_{1n})$

Let D' = $F_1 \cup F_2 \cup F_3$. F_1 and F_2 dominates all the edges of W_n and edges of the form

 $(v_{i,e_{jk}})$ where e_{jk} is not incident with v_i . $F_2 \cup F_3$ dominates all the edges of $L(W_n)$. Therefore, D' is a edge dominating set of $B_1(W_n)$. $|D'| \leq n-1+n-2+n-2 = 3n-5$. $\langle D' \rangle$ is a graph obtained from P_{n-2}^{+} by subdividing each pendant edge and then attaching a path of length 2 at a pendant vertex of P_{n-2} . D' is a connected edge dominating set of $B_1(W_n)$.

Let D" be a minimum connected edge dominating set of $B_1(W_n)$. To dominate edges of W_n and edges of the form $(v_{i, e_{jk}})$ and to maintain connectedness of <D">, D" contains atleast (n-1) edges of W_n , (n-2) edges of the form $(v_{i, e_{jk}})$ and (n-2) edges of $L(W_n)$.

Therefore, $|D'| \ge 3n-5$. Hence, $\gamma_c'(B_1(W_n)) = 3n-5$.

Remark:2.4Since every connected edge dominating set is also an edge dominating set of a graph G, γ' ($B_1(G)$) $\leq \gamma_c'$ ($B_1(G)$)

Remark: 2.5 Any connected edge dominating set is also a total edge dominating set and hence $\gamma_t'(B_1(G)) \leq \gamma_c'(B_1(G))$.

3.Total edge dominationin B(G, L(G), NINC) of a Graph

In the following total edge domination number of $B_1(P_n)$, $B_1(C_n)$, $B_1(K_{1,n})B_1(W_n)$ are found. **Theorem : 3.1** For the Path P_n on n (n ≥ 4) vertices, $\gamma'_t (B_1(P_n)) \le n$.

Proof: Let $v_1, v_2, ..., v_n$ be the vertices and $e_{i,i+1} = (v_i, v_{i+1})$ (i = 1, 2, ..., n-1) be the edges of P_n . Then $v_1, v_2, ..., v_n, e_{12}, e_{23}, ..., e_{n-1,n} \in V(B_1(P_n))$. $B_1(P_n)$ has 2n-1vertices and $n^2 - n - 1$ edges.

Case (i): n is even

$$\text{Let }\mathsf{D}'=\bigcup_{i=1}^{n/2}\{(v_{2i-1},v_{2i})\}\text{ and }\mathsf{D}''=\bigcup_{i=1}^{n-2/2}\{\left(v_{2i+1},e_{2i-1,2i}\right)\}\text{ and }\mathsf{D}=\mathsf{D}'\cup\mathsf{D}''\{\text{ (}v_{i},e_{n-2,n-1})\}$$

Then $D \subseteq E(B_1(P_n))$ and $|D| = \frac{n}{2} + \frac{n-2}{2} + 1 = n$. D is an edge dominating set of $B_1(P_n)$ and $< D > \cong \frac{n}{2} P_3$ with central vertices $v_1, v_2, ..., v_{n-1}$ respectively.

Therefore, D is a total edge dominating set of $B_1(P_n)$ and hence $\gamma'_t(B_1(P_n)) \le |D| = n$.

Case(ii): n is odd

Let
$$\mathsf{F}' = \bigcup_{i=1}^{n-1/2}\{(v_{2i-1},v_{2i})\}$$
 and $\mathsf{F}'' = \bigcup_{i=1}^{n-3/2}\{\left(v_{2i+1},e_{2i-1,2i}\right)\}$

and let $F = F' \cup F'' \cup \{(v_{n-1}, v_n) \ (v_i, e_{n-2,n-1})\}$ then $F \subseteq E(B_1(P_n))$ and $|F| = \frac{n-1}{2} + \frac{n-3}{2} + 2 = n$. F is an edge dominating set of $B_1(P_n)$ and $\langle F \rangle \cong \frac{n-3}{2} P_3 \cup P_4$ where the central vertices of P_3 are v_1, v_2, \dots, v_{n-4} and P_4 is induced by the edges (v_{n-2}, v_{n-1}) , (v_{n-1}, v_n) and $(v_{n-2}, e_{n-4,n-3})$. Therefore, F is a total edge dominating set of $B_1(P_n) \otimes |F| = n$.

Example:

(1) Let $V(P_8) = \{ v_1, v_2, ..., v_8 \}$ and $E(P_8) = \{((v_i, v_{i+1}) (i = 1, 2, ..., 7).$

Then D = {(v₁, v₂) (v₃, v₄) (v₅, v₆) (v₇, v₈) (v₁, e₆₇) (v₃, e₁₂) (v₅, e₃₄) (v₇, e₅₆)} is an edge dominating set of B₁(P₈) and D \subseteq E (B₁(P₈)) and <D> \cong 4 P₃. D is a total edge dominating set of B₁(P₈). Therefore, $\gamma'_t(B_1(P_8)) \le 8$.

(2) Let $V(P_7) = \{v_1, v_2, ..., v_7\}$ and $E(P_7) = \{((v_i, v_{i+1}) (i = 1, 2, ..., 6).$

Then D = {(v₁, v₂) (v₃, v₄) (v₅, v₆) (v₆, v₇) (v₁, e₅₆) (v₃, e₁₂) (v₅, e₃₄)}is an edge domination set of B₁(P₇) and D \subseteq E (B₁(P₇) and <D> \cong 2 P₃ \cup P₄ and D is a total edge dominating set of B₁(P₇). Therefore, $\gamma'_{t}(B_{1}(P_{7})) \leq 7$.

Theorem:3.2 For the cycle C_n on $n(n \ge 3)$ vertices, $\gamma'_t(B_1(C_n)) \le n$, if n is even

\leq n+1, if n is odd

Proof: Let $v_1, v_2, ..., v_n$ be the vertices and $e_{i,i+1} = (v_i, v_{i+1})$ (i = 1, 2, ..., n-1) and $e_{n1} = (v_n, v_1)$ be the edges of C_n . Then $v_1, v_2, ..., v_n, e_{12}, e_{23}, ..., e_{n-1,n}e_{n1} \in V(B_1(C_n)).B_1(C_n)$ has 2 nvertices and n^2 edges.

Case (i): n is even

$$\text{Let } \mathsf{D}' = \bigcup_{i=1}^{n/2} \{ (v_{2i-1}, v_{2i}) \} \text{ and } \mathsf{D}'' = \bigcup_{i=1}^{(n-2)/2} \{ \left(v_{2i+1}, e_{2i-1,2i} \right) \} \text{ and } \mathsf{D} = \mathsf{D}' \cup \mathsf{D}'' \{ (v_i, e_{n-2,n-1}) \}$$

Then $D \subseteq E(B_1(C_n))$ and $|D| = \frac{n}{2} + \frac{n-2}{2} + 1 = n$. D is an edge dominating set of $B_1(C_n)$ and $< D > \cong \frac{n}{2} P_3$ with central vertices $v_1, v_2, ..., v_{n-1}$ respectively.

Therefore, D is a total edge dominating set of $B_1(C_n)$ and hence $\gamma'_t(B_1(C_n)) \leq |D| = n$.

Case(ii): n is odd

Let
$$F' = \bigcup_{i=1}^{n/2} \{ (v_{2i-1}, v_{2i}) \}$$

$$\begin{split} \mathsf{F}'' = & \bigcup_{i=1}^{(n-1)/2} \{ \left(v_{2i+1}, e_{2i-1,2i} \right) \} \text{and let } \mathsf{F} = \mathsf{F}' \cup \mathsf{F}'' \cup \{ (\mathsf{v}_1, \mathsf{e}_{n-1,n}) \} \text{ then } \mathsf{F} \subseteq \mathsf{E} \left(\mathsf{B}_1(\mathsf{C}_n) \right) \text{ and } |\mathsf{F}| = \frac{\mathsf{n}}{2} + \frac{\mathsf{n}-1}{2} + 1 = \mathsf{n}+1. \end{split} \\ \mathsf{P}_1 = \mathsf{n} + \mathsf{e}_2 = \mathsf{e}_2 \mathsf{e}_3 \mathsf{e}_3 \mathsf{e}_3 \mathsf{e}_4 \mathsf{e}_5 \mathsf{e}_3 \mathsf{e}_5 \mathsf{e}_5 \mathsf{e}_3 \mathsf{e}_5 \mathsf{e}_3 \mathsf{e}_5 \mathsf{e}_3 \mathsf{e}_5 \mathsf{e}_3 \mathsf{e}_5 \mathsf{e}_3 \mathsf{e}_5 \mathsf{$$

Theorem: 3.3 For the star $K_{1,n}$ on (n+1) vertices (n≥3), $\gamma'_t(B_1(K_{1,n})) \le n+1$

Proof: Let v_1 , v_2 , v_3 , ..., v_{n+1} be the vertices of $K_{1,n}$, with v_1 as the central vertex. Let

 $e_{1,i+1} = (v_1, v_i), i = 2, 3, ..., n+1$ be the edges of $K_{1,n}$. Then $v_1, v_2, ..., v_{n+1}, e_{12}, e_{13} ..., e_{1n+1} \in V(B_1(K_{1,n})).B_1(K_{1,n})$ has 2n + 1 vertices and 2n+1 and (n(3n-1))/2 edges.

Case(i): n is odd

International Journal of Engineering, Science and Mathematics (UGC Approved)

Vol. 6 Issue 6, October 2017, ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: <u>http://www.ijesm.co.in</u>, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Let D' = $\bigcup_{i=3}^{(n+3)/2} \{ (v_i, e_{2i-2}), (e_{1,2i-2}, e_{1,2i-1}) \}$ where $e_{1, n+2} = e_{12}$ and let D = D' $\cup \{ (v_1, v_2), (v_2, e_{13}) \}$ Then D $\subseteq E (B_1(K_{1, n}) \text{ and } | D | = 2[\frac{n+3}{2} - 2] + 2 = 2(\frac{n-1}{2}) + 2 = n+1$. D is an edge dominating set of $B_1(K_{1, n})$ and $< D \ge \frac{n+1}{2}p_3$ with central vertices $v_2, e_{14}, e_{16}, \dots, e_{1,n+1}$. Therefore D is a total edge dominating set of $B_1(K_{1, n})$ and hence $\gamma'_t(B_1(K_{1, n})) \le | D | = n+1$.

case(ii): n is even

Let $F' = \bigcup_{i=3}^{n+2/2} \{ (v_i, e_{1,2i-2}), (e_{1,2i-2}, e_{1,2i-1}) \}$ and $F = F' \cup \{ (v_1, v_2), (v_2, e_{13}), (e_{1,n+1}, e_{12}) \}$

$$\begin{split} \mathsf{F} &\subseteq \mathsf{E} \; (\mathsf{B}_1 \, (\mathsf{K}_{1,\,\mathsf{n}}) \text{ and } | \mathsf{F} | = 2 \; [\frac{\mathsf{n}+2}{2} - 2] + 3 = \mathsf{n} - 2 + 3 = \mathsf{n}+1. \quad \mathsf{D} \text{ is an edge dominating set of } \mathsf{B}_1 (\mathsf{K}_{1,\,\mathsf{n}}) \text{ and } \\ <\mathsf{D} > &\cong \frac{\mathsf{n}-2}{2} \mathsf{P}_3 \cup \mathsf{P}_4, \text{ where the central vertices of } \mathsf{P}_3 \text{ are } \mathsf{v}_2, \mathsf{e}_{14}, \mathsf{e}_{16}, \ldots, \mathsf{e}_{1,\mathsf{n}-2} \text{ and the } \mathsf{P}_4 \text{ is induced by the edges } (\mathsf{v}_{\mathsf{n}-2}, \mathsf{e}_{1\mathsf{n}}) \; (\mathsf{e}_{1\mathsf{n}}, \mathsf{e}_{1,\mathsf{n}+1}) \; (\mathsf{e}_{1,\,\mathsf{n}+1}, \mathsf{e}_{12}) \text{ . Therefore, } \mathsf{D} \text{ is a total edge dominating set of } \mathsf{B}_1 (\mathsf{K}_{1,\,\mathsf{n}}) \text{ and hence } \gamma'_t (\mathsf{B}_1 (\mathsf{K}_{1,\mathsf{n}})) \leq |\mathsf{D}| = \mathsf{n}+1. \end{split}$$

Theorem:3.4 For the Wheel $W_n (n \ge 5)$ on n vertices, $\gamma'_t (B_1(W_n)) \le 2n - 2$

Proof:Let v_1 , v_2 , v_3 , ..., v_n be the vertices of W_n with v_1 as the central vertex. Let

 $e_{1,i} = (v_{1,}v_{i})(i = 2, 3, ..., n)$ and $e_{i, i+1} = (v_{1,}v_{i+1})$ (i = 2, 3, ..., n-1) $e_{n2} = (v_{n,}v_{2})$ be the edges of W_{n} . Then $v_{1,}v_{2}$, ..., v_{n} , e_{12} , e_{13} ..., $e_{1n,}e_{12}$, e_{23} ,..., $e_{n-1,n}e_{n2} \in V(B_{1}(W_{n})).B_{1}(W_{n})$ has n+n-1+n-1=3n-2 vertices and (n-1)(3n-4))/2 edges.

Case(i): n is even

Let D' = $\bigcup_{i=3}^{n/2} \{ (v_i, e_{1,2i-2}), (e_{1,2i-2}, e_{1,2i-1}) \}$

$$\begin{split} D^{\prime\prime} &= \bigcup_{i=2}^{\frac{n}{2}} \{ \left(v_{\frac{n}{2}+i}^{n}, \ e_{2i-3}, _{2i-2} \right) (e_{2i-3, 2i-2}, \ e_{2i-2, 2i-1}) \} \text{and let } D = D^{\prime} \cup \ D^{\prime\prime} \cup \ \{ (v_{1}, v_{2}), \ (v_{2}, e_{13}) \ (v_{n/2+1}, \ e_{1n}), \\ (e_{1n}, e_{n2}) \} \text{ then } D \subseteq E \ (B_1 \ (W_n)) \text{ and } |D| = 2 \ (n/2 - 2) + (n/2 - 1) + 4 = 2n - 2. \ D \text{ is a total edge dominating set of } B_1 (W_n) \text{ and } < D > \cong (n-1) \ P_3 \text{ with central vertices } v_2, \ e_{14}, e_{16}, \dots, e_{1,n/2}, \ e_{12}, e_{34}, \dots, e_{n-3,n-2}. \end{split}$$

Case(ii): n is odd

Let
$$\mathsf{F}' = \bigcup_{i=3}^{(n+1)/2}\{ \left(v_i, \; e_{1,2i-2} \right), \left(e_{1,2i-2}, \; e_{1,2i-1} \right) \}$$

 $\begin{aligned} \mathsf{F}'' = \mathsf{U}_{i=1}^{\frac{n-1}{2}} \{ \left(\mathsf{v}_{\frac{n+1}{2}+i}, \ \mathsf{e}_{2i-1,2i} \right) (\mathsf{e}_{2i-1,2i}, \ \mathsf{e}_{2i, 2i+1}) \} \text{and let } \mathsf{F} = \mathsf{F}' \cup \mathsf{F}'' \cup \{ (\mathsf{v}_1, \mathsf{v}_2), \ (\mathsf{v}_2, \mathsf{e}_{13}) \ \mathsf{F} \subseteq \mathsf{E} \ (\mathsf{B}_1(\ \mathsf{W}_n)) \text{ and} \\ |\mathsf{F}| = 2 \ (\mathsf{n}+1/2 \ -2) \ +2(\mathsf{n}-1/2) \ +2 \ = \ 2\mathsf{n} \ -2. \ \mathsf{F} \text{ is a total edge dominating set of } \mathsf{B}_1(\mathsf{W}_n) \text{ and } < \mathsf{F} > \cong (\mathsf{n}-1) \\ \mathsf{P}_3. \text{Therefore, } \mathsf{F} \text{ is a total edge dominating set of } \mathsf{B}_1(\mathsf{W}_n) \text{ and } \text{hence } \gamma'_t(\mathsf{B}_1(\mathsf{W}_n)) \le |\mathsf{F}| = 2\mathsf{n}-2. \end{aligned}$

Theorem:3.5 G have a perfect matching, $\gamma'_t(B_1(G)) \le 2 \beta_1(G)$ if $\beta_1(G) > \alpha_0(L(G))$

$$\leq 2\alpha_0(L(G))$$
 if $\beta_1(G) \leq \alpha_0(L(G))$

Proof: Let $K \subseteq E(G)$ be a perfect matching such that $|K| = k = \beta_1(G)$. Then $K \subseteq E(B_1(G))$.

International Journal of Engineering, Science and Mathematics (UGC Approved)

Vol. 6 Issue 6, October 2017, ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Let K = { $(v_1, u_1) (v_2, u_2)$, ..., (v_k, u_k) }. Let M be a point cover of L(G) and let $|M| = \alpha_0(L(G)) = m = \{e_1, e_2, ..., e_m\}$ Case: (i) k> m ($\beta_1(G) > \alpha_0$)

Choose one of u_i and v_i . Let it be v_i (i= 1, 2, ..., k). Choose a distinct vertex e_i in M such that the corresponding edge in G is not incident with v_i . Then the edge $(v_i, u_i) \in E(B_1(G))$. Let L be the set of all these edges. |L| = k. Then $L \subseteq E(B_1(G))$. Let $D = K \cup L \subseteq E(B_1(G))$. K dominates all the edges of G in $B_1(G)$ and edges of the form (w, e) where $e \in E(G)$ is not incident with $w \in V(G)$. L dominates all the edges of L(G). Therefore, D is an edge dominating set of $B_1(G)$. Also < D> contains no isolated edges. Therefore, D is a total edge dominating set of $B_1(G)$ and hence $\gamma'_t(B_1(G)) \le |D| = |K \cup L| = 2K = 2\beta_1(G)$.

Case(ii): $k \le m$, that is $\beta_1(G) > \alpha_0(L(G))$. For each vertex $e_i \in M$, choose a vertex $u_i(or) v_i$, which is not incident with e_i . Then the edge $(v_i, e_i) \in E(B_1(G))$. Let N be the set of all these edges. |N| = m, $N \subseteq E(B_1(G))$. Then the set D' = $K \cup N$ is a total edge dominating set of $B_1(G)$ as in case(i). Therefore, $\gamma'_t(B_1(G)) \le |D'| = |K \cup N| = \beta_1(G) + m = \beta_1(G) + \alpha_0(L(G) \le \alpha_0(L(G))$.

Therefore, $\gamma'_t(B_1(G)) \le 2 \beta_1(G)$ if $\beta_1(G) > \alpha_0(L(G))$

 $\leq 2\alpha_0(L(G))$ if $\beta_1(G) \leq \alpha_0(L(G))$.

4. CONCLUSION

In this paper, connected edge and total edge domination numbers of Boolean Function GraphB(G,L(G),NINC) of paths, cycles, complete graphs, stars, wheels are obtained.

REFERENCE:

[1]. S Arumugam and S.Velammal, Edge domination in graphs ,Tairwanese Journal of Mathematics, Vol.2, pp.173-179,1998.

[2]. Harary F, Graph Theory, Addison, – Wesley Reading Mass., 1969.

[3]. T. N. Janakiraman, S.Muthammai, M.Bhanumathi, On the Boolean Function Graph of a Graph and on its Complement, Mathematica Bohemica, 130(2005), No.2, pp. 113-134.

[4]. T. N. Janakiraman, S. Muthammai, M. Bhanumathi, Domination Numbers on the Boolean Function Graph of a Graph, Mathematica Bohemica, 130(2005), No.2, 135-151.

[5]. T.N.Janakiraman, S.Muthammai, M. Bhanumathi, Domination Numbers on the Complement of the Boolean Function Graph of a Graph, Mathematica Bohemica, 130(2005), No.3, pp. 247-263.

[6]. S.Mitchell and S.T.Hedetniemi, Edge domination in trees, CongressusNumerantium, Vol. 19, pp. 489-509, 1977.

[7]. S. K. Vaidya and R.M. Pandit, Edge Domination in Some Path and Cycle Related Graphs, ISRN Discrete Mathematics, Vol. 2014, Article ID 975812, 5 pages.

[8]. S.Velammal, Equality of connected Edge Domination and Total Edge domination in Graphs,

IERST, No:2319-7463, vol.3 Issue 5, May- 2014, pp.198-201.

[9]. S.Muthammai, S.Dhanalakshmi, Edge Domination in Boolean Function Graph

B(G, L(G), NINC) of a Graph, IJIRSET Journal, Vol. 4, Issue 12, December 2015, pp.12346 – 12350.

[10]. S.Muthammai, S.Dhanalakshmi, Edge Domination in Boolean Function Graph B(G, L(G), NINC) of Corona of Some Standard Graphs, Global Journal of Pure and Applied Mathematics, Vol. 13, Issue 1, 2017, pp.152 – 155.